CPS Control: 01_11/27/2018 AOR Project Issue: A_00/00/00

SECTION 26 05 73

ARCHITECT OF RECORD/ENGINEER OF RECORD IS RESPONSIBLE FOR REVIEWING THIS SPECIFICATION SECTION IN DETAIL FOR COORDINATION WITH THE PROJECT SCOPE OF WORK.

ALL "PROJECT NOTE" TEXT IS TO BE REMOVED FOLLOWING REVIEW OF THE CONTENT OF EACH NOTE BY THE ARCHITECT OF RECORD/ENGINEER OF RECORD.

EDIT THE DOCUMENT FOOTER TO INCLUDE THE PROJECT NAME AND NUMBER.

EDIT THE DOCUMENT HEADER TO INDICATE THE ARCHITECT OF RECORD PROJECT ISSUE" DATE. THE "CPS CONTROL" DATE SHOULD NOT BE EDITED.

ANY MODIFICATIONS TO THE TECHNICAL STANDARDS IN THIS SECTION - INCLUDING THE REMOVAL OR ADDITION OF MANUFACTURERS - MUST BE APPROVED BY CPS.

REQUESTS FOR MODIFICATION ARE TO BE SUBMITTED TO THE DESIGN MANAGER DURING THE DESIGN PHASE FOR REVIEW AND APPROVAL.

POWER SYSTEM STUDIES

PART 1 - GENERAL

- 1.01 SECTION INCLUDES
 - A. Short-circuit study.
 - B. Protective device coordination study.
 - C. Arc flash and shock hazard assessment.
 - Includes arc flash hazard warning labels.
 - D. Criteria for the selection and adjustment of equipment and associated protective devices not specified in this section, as determined by studies to be performed.
- 1.02 REFERENCE STANDARDS
 - A. ANSI Z535.4 American National Standard for Product Safety Signs and Labels; 2011.
 - B. Chicago Electrical Code Municipal Code of the City of Chicago, Building/Electrical Code Requirements; 2018.
 - C. IEEE 141 IEEE Recommended Practice for Electrical Power Distribution for Industrial Plants; 1993 (Reaffirmed 1999).
 - D. IEEE 242 IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems; 2001, with Errata (2003).
 - E. IEEE 399 IEEE Recommended Practice for Industrial and Commercial Power Systems Analysis; 1997.

- F. IEEE 551 IEEE Recommended Practice for Calculating Short-Circuit Currents in Industrial and Commercial Power Systems; 2006.
- G. IEEE 1584 IEEE Guide for Performing Arc Flash Hazard Calculations Includes 1584, 1584A and 1584B; 2002 (Amended 2011).
- H. NEMA MG 1 Motors and Generators; 2017.
- I. NFPA 70E Standard for Electrical Safety in the Workplace; 2017.

1.03 ADMINISTRATIVE REQUIREMENTS

A. Coordination:

- 1. Coordinate the work to provide equipment and associated protective devices complying with criteria for selection and adjustment, as determined by studies to be performed.
- 2. Notify Architect/Engineer of Record of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.
- B. Pre-Study Meeting: Conduct meeting with Owner to discuss system operating modes and conditions to be considered in studies.

C. Sequencing:

- 1. Submit study reports prior to or concurrent with product submittals.
- 2. Do not order equipment until matching study reports and product submittals have both been evaluated by Architect/Engineer of Record.
- 3. Verify naming convention for equipment identification prior to creation of final drawings, reports, and arc flash hazard warning labels (where applicable).

1.04 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Study preparer's qualifications.
 - 1. For coordination-study specialist, submit name and references for at least five actual Arc-Flash Hazard Analysis performed in the past year.
- C. Field testing agency's qualifications.
- D. Study reports, stamped or sealed and signed by study preparer.

E. Product Data:

- In addition to submittal requirements specified in other sections, include manufacturer's standard catalog pages and data sheets for equipment and protective devices indicating information relevant to studies.
 - a. Include characteristic time-current trip curves for protective devices.
 - b. Include impedance data for busway.
 - c. Include impedance data for engine generators.
 - d. Clearly indicate that proposed short circuit current ratings are fully rated.
 - e. Identify modifications made in accordance with studies that:
 - 1) Can be made at no additional cost to Board.
 - 2) As submitted will involve a change to the contract sum.
- 2. Provide product data and information for software program to be used for studies.
- F. Arc Flash and Shock Hazard Warning Label Samples: One of each type and legend specified.

CPS Control: 01_11/27/2018 AOR Project Issue: A_00/00/00

- G. Field quality control reports.
- H. Certification that field adjustable protective devices have been set in accordance with requirements of studies.
- I. Project Record Documents: Revise studies as required to reflect as-built conditions.
 - 1. Include hard copies with operation and maintenance data submittals.
 - 2. Include computer software files used to prepare studies with file name(s) cross-referenced to specific pieces of equipment and systems, including but not limited to:
 - a. Coordination study input data (including program input data sheets).
 - b. Study and Equipment Evaluation Reports.
 - c. Coordination Study Report.
 - d. Arc Flash Study Report.
 - e. Shock Hazard Report

1.05 POWER SYSTEM STUDIES

A. Scope of Studies:

1. Except where study descriptions below indicate exclusions, analyze system at each bus from primary protective devices of utility source down to each piece of equipment involved, including parts of system affecting calculations being performed (e.g. fault current contribution from motors).

2

- 3. Include in analysis alternate sources and operating modes (including known future configurations) to determine worst case conditions.
 - a. Known Operating Modes:
 - 1) Utility as source.
 - 2) Generator as source.
 - 3) Utility/generator in parallel.
 - 4) Maintenance settings.
- B. General Study Requirements:
 - 1. Comply with the Chicago Electrical Code.
 - 2. Perform studies utilizing computer software complying with specified requirements; manual calculations are not permitted.
 - 3. The studies shall be performed for As-Built condition reflecting all changes that occurred during construction and actual installed length of all the feeders.
 - 4. The studies shall be based on actual equipment submitted and reviewed by EOR.
 - 5. Include all power sources rated 50 V and greater.

C. Data Collection:

- Compile information on project-specific characteristics of actual installed equipment, protective devices, feeders, etc. as necessary to develop single-line diagram of electrical distribution system and associated input data for use in system modeling.
 - a. Utility Source Data: Include primary voltage, maximum and minimum three-phase and line-to-ground fault currents, impedance, X/R ratio, and primary protective device information.
 - 1) Obtain up-to-date information from Owner.
 - b. Generators: Include manufacturer/model, kW and voltage ratings, and impedance.

- c. Motors: Include manufacturer/model, type (e.g. induction, synchronous), horsepower rating, voltage rating, full load amps, and locked rotor current or NEMA MG 1 code letter designation.
- d. Transformers: Include primary and secondary voltage ratings, kVA rating, winding configuration, percent impedance, and X/R ratio.
- e. Protective Devices:
 - Circuit Breakers: Include manufacturer/model, type (e.g. thermal magnetic, electronic trip), frame size, trip rating, voltage rating, interrupting rating, available field-adjustable trip response settings, and features (e.g. zone selective interlocking).
 - 2) Fuses: Include manufacturer/model, type/class (e.g. Class J), size/rating, and speed (e.g. time delay, fast acting).
- f. Protective Relays: Include manufacturer/model, type, settings, current/potential transformer ratio, and associated protective device.
- g. Conductors: Include feeder size, material (e.g. copper, aluminum), insulation type, voltage rating, number per phase, raceway type, and actual length.

D. Short-Circuit Study:

- 1. Comply with IEEE 551 and applicable portions of IEEE 141, IEEE 242, and IEEE 399.
- 2. For purposes of determining equipment short circuit current ratings, consider conditions that may result in maximum available fault current, including but not limited to:
 - a. Maximum utility fault currents.
 - b. Maximum motor contribution.
 - c. Known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).
- 3. For each bus location, calculate the maximum available three-phase bolted symmetrical and asymmetrical fault currents. For grounded systems, also calculate the maximum available line-to-ground bolted fault currents.

E. Protective Device Coordination Study:

- 1. Comply with applicable portions of IEEE 242 and IEEE 399.
- 2. Analyze alternate scenarios considering known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).
- 3. Analyze protective devices and associated settings for suitable margins between timecurrent curves to achieve full selective coordination while providing adequate protection for equipment and conductors.

F. Arc Flash and Shock Hazard Assessment:

- 1. Comply with NFPA 70E.
- 2. Perform incident energy and arc flash boundary calculations in accordance with IEEE 1584 (as referenced in NFPA 70E Annex D), where applicable.
 - a. To clarify IEEE 1584 statement that "equipment below 240 V need not be considered unless it involves at least one 125 kVA or larger low-impedance transformer in its immediate power supply" for purposes of studies, study preparer to include equipment rated less than 240 V fed by transformers less than 125 kVA in calculations.
 - b. Where reasonable, study preparer may assume a maximum clearing time of two seconds in accordance with IEEE 1584, provided that the conditions are such that a worker's egress from an arc flash event would not be inhibited.
 - c. For single-phase systems, study preparer to perform calculations assuming three-phase system in accordance with IEEE 1584, yielding conservative results.
- 3. For equipment with main devices mounted in separate compartmentalized sections, perform calculations on both the line and load side of the main device.
- 4. Analyze alternate scenarios considering conditions that may result in maximum incident energy, including but not limited to:
 - a. Maximum and minimum utility fault currents.

- b. Maximum and minimum motor contribution.
- c. Known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).

G. Study Reports:

- 1. General Requirements:
 - a. Identify date of study and study preparer.
 - b. Identify study methodology and software product(s) used.
 - c. Identify scope of studies, assumptions made, implications of possible alternate scenarios, and any exclusions from studies.
 - d. Identify base used for per unit values.
 - e. Include single-line diagram and associated input data used for studies; identify buses on single-line diagram as referenced in reports, and indicate bus voltage.
 - f. Include conclusions and recommendations.
- 2. Short-Circuit Study:
 - a. For each scenario, identify at each bus location:
 - 1) Calculated maximum available symmetrical and asymmetrical fault currents (both three-phase and line-to-ground where applicable).
 - 2) Fault point X/R ratio.
 - 3) Associated equipment short circuit current ratings.
 - b. Identify locations where the available fault current exceeds the equipment short circuit current rating, along with recommendations.
- 3. Protective Device Coordination Study:
 - For each scenario, include time-current coordination curves plotted on log-log scale graphs.
 - b. For each graph include (where applicable):
 - 1) Partial single-line diagram identifying the portion of the system illustrated.
 - 2) Protective Devices: Time-current curves with applicable tolerance bands for each protective device in series back to the source, plotted up to the maximum available fault current at the associated bus.
 - 3) Conductors: Damage curves.
 - 4) Transformers: Inrush points and damage curves.
 - 5) Generators: Full load current, overload curves, decrement curves, and short circuit withstand points.
 - 6) Motors: Full load current, starting curves, and damage curves.
 - 7) Capacitors: Full load current and damage curves.
 - c. For each protective device, identify fixed and adjustable characteristics with available ranges and recommended settings.
 - 1) Circuit Breakers: Include long time pickup and delay, short time pickup and delay, and instantaneous pickup.
 - 2) Include ground fault pickup and delay.
 - 3) Include fuse ratings.
 - 4) Protective Relays: Include current/potential transformer ratios, tap, time dial, and instantaneous pickup.
 - d. Identify cases where either full selective coordination or adequate protection is not achieved, along with recommendations.
- 4. Arc Flash and Shock Hazard Assessment:
 - a. For each scenario, identify at each bus location:
 - 1) Calculated incident energy and associated working distance.
 - 2) Calculated arc flash boundary.
 - 3) Bolted fault current.
 - 4) Arcing fault current.
 - 5) Clearing time.
 - 6) Arc gap distance.

- b. For purposes of producing arc flash and shock hazard warning labels, summarize the maximum incident energy and associated data reflecting the worst case condition of all scenarios at each bus location.
- c. Identify locations where the calculated maximum incident energy exceeds 40 calories per sq. cm.
- d. Include recommendations for reducing the incident energy at locations where the calculated maximum incident energy exceeds 8 calories per sq. cm.
- e. Include arc flash and shock hazard labels color images printed on regular 8.5x11 in paper.

1.06 QUALITY ASSURANCE

- A. Study Preparer Qualifications: Professional electrical engineer licensed in Illinois and with minimum five years' experience in the preparation of studies of similar type and complexity using specified computer software.
 - Studies shall use computer programs that are distributed nationally and are in wide use.
 Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.
 - 2. Study preparer may not be employed by the manufacturer of the electrical distribution equipment.
 - 3. Study preparer may be employed by field testing agency.
- B. Computer Software for Study Preparation: Use the latest edition of commercially available software utilizing specified methodologies.
 - 1. Acceptable Software Products:
 - a. EasyPower LLC: www.easypower.com/#sle.
 - b. ETAP/Operation Technology, Inc.: www.etap.com.
 - c. SKM Systems Analysis, Inc.: www.skm.com.
 - d. CGI CYME; www.cyme.com.
 - e. EDSA Micro Corporation; www.poweranalytics.com

PART 2 - PRODUCTS

2.01 ARC FLASH AND SHOCK HAZARD WARNING LABELS

- A. Provide warning labels complying with NFPA 70E to identify arc flash hazards for each work location analyzed by the arc flash and shock risk assessment.
 - 1. Materials: Comply with Section 26 05 53 Identification for Electrical Systems.
 - 2. Minimum Size: 4 by 6 inches.
 - 3. Legend: Provide custom legend in accordance with NFPA 70E based on equipmentspecific data as determined by arc flash and shock risk assessment.
 - a. Include the following information:
 - 1) Arc flash boundary.
 - 2) Available incident energy and corresponding working distance.
 - 3) Nominal system voltage.
 - 4) Equipment identification.
 - 5) Date calculations were performed.
- B. Comply with ANSI Z535.4.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install arc flash and shock hazard warning labels in accordance with Section 26 05 53 - Identification for Electrical Systems.

3.02 FIELD QUALITY CONTROL

- A. See Section 01 40 00 Quality Requirements, for additional requirements.
- B. Adjust equipment and protective devices for compliance with studies and recommended settings.
- C. Notify Architect/Engineer of Record of any conflicts with or deviations from studies. Obtain direction before proceeding.
- D. Submit detailed reports indicating inspection and testing results, and final adjusted settings.

3.03 CLOSEOUT ACTIVITIES

- A. See Section 01 78 00 Closeout Submittals, for closeout submittals.
- B. See Section 01 79 00 Demonstration and Training, for additional requirements.
- C. Training: Include as part of the base bid training for Board's personnel on electrical safety pertaining to arc flash and shock hazards.
 - 1. Use site-specific arc flash and shock risk assessment report as training reference, supplemented with additional training materials as required.
 - 2. Provide minimum of eight hours of training.

END OF SECTION 26 05 73